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The problem of the conditions for the gyroscopic stabilization of unstable equilibria using gyroscopic forces with a degenerate 
matrix is considered. Systems with an odd number of degrees of freedom are an important example. The gyroscopic forces can 
generally be removed using a non-autonomous orthogonal transformation. The equations of motion then become a system of 
Sturm-Liouville type equations with a time-dependent potential. The conditions imposed on the skew-symmetric matrix of the 
gyroscopic forces for which the new potential depends periodically on time are indicated. These conditions are necessarily satisfied 
for non-zero matrices of the gyroscopic forces of minimum rank equal to two. Hence, the problem of gyroscopic stabilization 
reduces, in a number of cases, to investigating the stability of the equilibrium positions of systems with a periodic potential. The 
use of parametric-resonance theory enables new constructive conditions to be obtained for the stability of the equilibria of 
mechanical systems acted upon by additional degenerate gyroscopic forces. These conditions have the form of the conditions 
for an extremum of certain functions which depend solely on the position of the system. Particular attention is devoted to the 
stability conditions for large gyroscopic forces. It is shown, using examples, that the conditions of gyroscopic stabilization obtained 
are only sufficient. However, if the potential energy in the equilibrium position has a maximum and the matrix of the gyroscopic 
forces are non-degenerate, they are close to the necessary stability conditions. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. REDUCTION TO THE NON-AUTONOMOUS CASE 

As we know [l], small oscillations of a dynamical system in the region of an equilibrium position satisfy 
the linear equation 

~+l3+Px=O, XER” (1.1) 

where r is a skew-symmetric rz x IZ matric, while the matrix P is symmetric. The term -I3 has the meaning 
of a gyroscopic force acting on the system. 

The point x = 0 is an equilibrium position. A review of the results obtained on the problem of the 
stability of equilibrium can be found in [2]. The case when the potential energy V = (RX, x)/2 has a 
maximum is usually considered. 

It turns out that we can generally get rid of the gyroscopic forces if we make the replacement of 
variables 

x = A(t)z, A = exp(-l? / 2) (1.2) 

In the new coordinates z, Eq. (1.1) takes the form 

i’+Q(t)z=O, Q=A-‘(P-r2/4)A (1.3) 

However, after this replacement, Lagrange’s function 

L=(i,i)l2-(Qz,z>/2 (1.4) 

depends explicitly on time. Note that after making the inverse change (1.2) the Lagrangian (1.4) becomes 
the function 

Lagrange’s equation with this Lagrangian is obviously identical with (1.1). 
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Since the matrix I is skew-symmetric, the matrices4 and& are orthogonal. Consequently, problems 
of the stability of trivial solutions of Eqs (1.1) and (1.3) are equivalent. 

It would seem at first glance that a reduction to a non-autonomous system only complicates the stability 
analysis. However, the examples given below show that this is not so. 

1. We will assume that the matrices I and P commute: TP = PT. Then the matrix Q does not depend 
explicitly on time and the criterion of gyroscopic stabilization reduces to the following: the modified 
potential energy 

w(~)=(~z,z)+(rz,rz)/4 (W 

has a strict minimum at the point z = 0. This result was obtained earlier by another method in [3]. 
2. Suppose the quadratic form (1.5) is non-positive for all z E [w”. Then L 3 0 and, by a result obtained 

previously in [4], the equilibrium z = 0 of system (1.3) is unstable. Consequently, the equilibrium 
x = 0 of initial system (1.1) is also unstable. This result was obtained in [5] for a stronger condition: 
the form of (1.5) is negative-definite. 

3. We will assume that the matrix Q(t) is periodic with respect to time. In this case the classical 
Thomson result on the impossibility of gyroscopic stabilization of the equilibriumx = 0 for an odd degree 
of instability can be derived from Hill’s formula, which relates the multiplier of the zeroth periodic 
solution of system (1.3) with its Morse index (see [6,7]). In connection with this observation, it would 
be useful to extend Hill’s formula to the more general case when the elements of the matrix Q depend 
conditionally-periodically on time. 

2. THE STRUCTURE OF THE GYROSCOPIC FORCES FOR SYSTEMS 
WITH A PERIODIC POTENTIAL 

We will assume 

r=ysTfks (2.1) 

I,, = diag(J ,..., J,O), J = , rank I, = 2k 

where y is a real number and S is an orthogonal n x n matrix. It can be assumed that y > 0: the case 
y < 0 reduces to this after making the replacement t + -t. 

Since 

(STfs)T = -(STfS) 

matrix (2.1) is, in fact, skew-symmetric. We will discuss its properties. 
1. The matrix exp( + Tt/2) - (4x/y) is periodic in t. 
In fact, this matrix satisfies the equation 

A=fI-A/2, A(O)=E. 

We will put A = [ui, . . . , u,], where u, E [w” are solutions of the linear system 

ri =*ru/2 

Consequently 

li =fySTISu/2 

We will assume u = Su and use the orthogonality condition ST = S-‘. 

If u = (y, . . . , u,J’, then 

ti, =+yv,12, tiz =Tyv,/2 )...) I&_, =fyvz,/2 

li2k = +,2k_, 12, ilk+, = . . . = ti,, = 0 
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The solutions of this system are periodic in t with period 47r/y. 
2. If I has the form (2.1) the matrix Q(t) from (1.3) is (2rc/y)-periodic in t. 
Here we use the (4dy)-periodic@ of the orthogonal matrices A(t) and A-'(t), and also the fact that 

the functions sin2, sin cos and cos2 have period rc. 
3. The following inequality hold for all x B lRn 

(I-x, l-x) - y+, x) S 0 (2.2) 

If fact 

(s’~sx,STISx)-(Sx,Sx)=(lz,fz)-(z,z)=-z~~+, -...-2; C 0 

Example. We will show that, when n = 3, any skew-symmetric matrix I has the form (2.1), where k = 1, if 
- r#O. 

Obviously, it is sufficient to consider the case when 

0 -03 02 

I-= 03 0 -01 

-02 01 0 

and w* = of + 0: + w: = 1. In (2.1) suppose y = 1 and 

al 02 03 

s= 4 b2 b3 

Cl c2 c3 

(2.3) 

Then w = b x a, when w, a and b are vectors of a three-dimensional Euclidean space with components wi, ai and 
bi respectively. 

In view of the orthogonality of the matrix S 

lul=l!rl= I and (a,b)=O (2.4) 

It is clear that for any unit vector w we can always find two vectors a and b which satisfy conditions (2.4) such that 
w=bxu. 

This example can be generalized. We will show that if rankI = 2, the matrix I can be represented in the form 
(2.1). 

The vector w is called the vortex vector if Iw = 0. All vortex vectors form a linear space W of dimension 
n - 2. Suppose the vectors u = (ui, . . . , u,)‘, . . . . u = (y, . . . , qJT make up an orthonormalized basis in IV. We will 
supplement its vectors II = (ui, . . . , uJT and b = (bI, . . . , b,JT up to the orthonormalized basis in I%“. The matrix 

is obviously orthogonal. Denote it by S-l. The product IS-’ has the form 

II* * 011 

where the asterisks denote two non-zero columns. The skew-symmetric matrix S(IS-‘) has the same form. 
Consequently, SlXr = yZ2, whence Eq. (2.1) follows. 

We will now show that the problem of the gyroscopic stabilization of an unstable equilibrium is closely 
related to the phenomenon of parametric resonance. To do this we will consider the case when 
detr # 0 (consequently, IZ is even), and the elements of the matrix P are small. The latter is equivalent 
to the assumption that the potential energy takes moderate values, while the norm of the matrix of the 
gyroscopic forces is large. Taking (2.1) and property 2 into account, Eq. (1.3) can be reduced to the form 

(2.5) 
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where y = Sz and R(w) is a 2n-periodic symmetric it x n matrix. By our assumption, the norm ]]P]] is 
small; consequently, the norm ]]R ]] is also small. 

Equation (2.5) describes the oscillations of a mechanical system with a natural frequency D = y/2 acted 
upon by a small periodic perturbation with frequency o = y. When ]]P]] + 0 we have parametric 
resonance 28= o. Moreover, the system is at the boundary of the most dangerous zone of parametric 
resonance, when the frequency of the natural oscillations is half the frequency of the perturbing force. 
Hence, the possibility of gyroscopic stabilization of the equilibrium x = 0 will depend on where system 
(2.5) is when the elements of the matrixP increase: outside or inside the zone of parametric resonance. 

3. THE STABILITY CONDITIONS 

The main result is as follows. 

Theorem. Suppose the matrix of the gyroscopic forces has the form (2.1). Ifx = 0 is a strict minimum 
of the modified potential energy W(x) and a strict maximum of the difference 

W(x) - r*tx, x)/4 (3.1) 

thenx = 0 is a stable equilibrium of system (1.1). 
In order to understand better the meaning of the sufficient conditions of stability, we will consider 

the limiting case when the parameter y takes larger values. We will introduce the plane 

A= (x:rx=o] 

Suppose M is the orthogonal supplement of A. It can be shown that 

M=(x:x= rZ,ZE lRn1 

In fact 

(x, l-z) = -(l-x, 5) = 0 

ifx E A. Moreover 

dimM = ranks = 2k. dimh = n - rankr 

For large values of y the condition for the modified potential energy at the pointx = 0 to be a minimum 
becomes the condition 

V(x) > 0 for all x E A and x#O 

By virtue of inequality (2.2), the function (3.1) has a maximum for large values of y, if 

(3.2) 

V(x)<0 forall XE M and x#O (3.3) 

This condition can be represented in the following equivalent form: the quadratic form (PIz, I’z) is 
negative-definite in the subspace M. 

Hence, according to the theorem, if conditions (3.2) and (3.3) are satisfied, then for large values of 
I the equilibriumx = 0 is stable. Somewhat different sufficient conditions for stability for large gyroscopic 
forces were obtained previously in [8] by the method of Lyapunov functions. 

Note that conditions (3.2) and (3.3) are only the sufficient conditions for stability. 
In fact, suppose n = 3, P = diag(p1,pz,p3), while the matrix I has the form (2.3). As was shown in 

[8], if the degree of instability is even, the criterion of gyroscopic stabilization of the equilibrium 
x = 0 in the case of large values of I reduces to the inequality 

It can be shown that this inequality is equivalent to condition (3.2). 
It is worth mentioning that it follows from conditions (3.2) and (3.3) that the degree of Poincare 

instability for the potential V is even. Consequently, the necessary condition for Kelvin gyroscopic 
stabilization is necessarily satisfied. 
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We will now prove the theorem. By the condition, all the eigenvalues of the symmetrical matrix 
P -q/4 are positive. We will denote them c$ (0, > 0) and arrange them in increasing order 

o<o;ao:s...~W,2 

Since the matrix A(t) is orthogonal, then (according to (1.3)) the inequalities 

(3.4) 

hold for all values oft. 
By property 2 (Section 2) the frequency of the periodic matrix Q(t) is 

w=2x/T=y 

Since the quadratic form (3.1) is negative-definite and C$ is the maximum eigenvalue of the matrix 
P - 12/4, we have 

0>26.& (3.6) 

It remains to use the well-known result that, when conditions (3.5) and (3.6) are satisfied, the trivial 
solution z = 0 of system (1.3) is stable. 

Remark. The sufficiency of conditions (3.5) and (3.6) for the stability of the trivial solution of a system of the 
form (1.3) can be simply derived from the general results of the strong stability of linear Hamiltonian systems with 
periodic coefficients (see [9, Chapter III]). They are given in explicit form, for example, in [lo]. 

As an example, consider the case when the potential energy in equilibrium has a strict maximum and the matrix 
of the gyroscopic forces (2.1) is degenerate. In particular, n is even. In view of inequality (2.2) and the assumption 
that the potential I/ is negative-definite, the quadratic form (3.1) is negative-definite. Consequently, in this case 
the sufficient condition for gyroscopic stabilization is the condition that the changed potential energy should be 
positive-definite. However, it is now the necessary condition. 

Example. Suppose n = 2, P = diag@i,pz) and the matrix r always has the form (2.1): 

I-= 
0 Y I I -Y 0 

Here the orthogonal matrix S can be assumed to be unique. In the most interesting case, the potential energy has 
a maximum: the numbersp, andpz are negative. As we know (see, for example, [l]), the stability condition reduces 
to the inequality 

v>&l+JKl (3.7) 

On the other hand, the condition for the matrix P - r2/4 to be positive-definite is equivalent to the inequality 

y>2&-h p= minh.p2) (3.8) 

This is obviously stronger than condition (3.7) and is only identical with it when pi = p2. 

4. SOME GENERALIZATIONS 

It was noted in [lo] that conditions (3.5) and (3.6) for the stability of the zeroth solution of system (1.3) 
can be weakened somewhat: the inequality on the left in (3.5) can be replaced by the condition for the 
averaged matrix 

(4.1) 

to be positive-definite. Hence, in the theorem in Section 3 the condition for the quadratic form W 
to be positive-definite can be replaced by the weaker condition for the symmetric matrix (Q) to be 
positive. 
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Example. Consider once again the case when n = 2 with the assumptions and notation of Section 3. It can be 
shown that 

(Q)=p’+p2 
2 

where E is the 2 x 2 identity matrix. 
Hence, we obtain the sufficient condition for gyroscopic stabilization 

Whenp, # p2 we have the inequalities 

(4.2) 

Consequently, condition (4.2) is more accurate than conditions (3.3), but it is also not necessary for the 
stabilization of the equilibrium. 

The theorem of Section 3 can be refined further. Suppose o1 and w, are the minimum and maximum 
eigenvalues of the positive-definite matrix (3.4), respectively. Inequalities (3.5) enable us to use well- 
known stability conditions for parametric excitation [9, lo]: if the frequency of the periodic excitation 
o = y does not lie in any of the intervals 

2[wt, 0,1/m, m = 1,2, . . . (4.3) 

the trivial solution z = 0 is stable. Consequently, this condition is sufficient for the rest point x = 0 of 
the initial system to be stable. In particular, if condition (3.6) is satisfied, the frequency y must necessarily 
lie at the union of intervals (4.3). 

In view of the fact that the harmonic series diverges, the intervals (4.3) necessarily overlap. However, 
the measure of their union approaches zero when w, - w1 + 0. 

5. THE CONDITIONS OF GYROSCOPIC STABILIZATION, BASED ON 
ESTIMATES OF THE EIGENVALUES 

To investigate the stability of the trivial solution of Eq. (1.3) with T-periodic symmetric matrix Q(t), we 
can use Krein’s criteria [ll] (see also [9, Chapter III]). From the point of view of the form of the matrix 
Q, criterion 4 from [ll], which, incidentally, is inaccurately formulated in [ll] and [9], is the most 
constructive. Here is its correct formulation: if the least eigenvalue q(t) of the matrix Q(r) satisfies the 
conditions 

q(r) 3 .* > 0 (5.1) 

and 

0 c a c x/T (5.2) 

linear equation (1.3) is extremely stable, since 

(5.3) 

We will use this criterion for matrix Q of the form (1.3). Clearly, for all values oft the spectrum of 
the matrix Q(t) is identical with the spectrum of the constant matrix (3.4). Consequently, condition (5.1) 
is satisfied if the modified potential energy W(X) has a strict minimum at the pointx = 0. In the notation 
of Section 3, a = ol. 

We will show that condition (5.2) is necessarily satisfied if the potential energy V(x) does not have a 
minimum at the point x = 0. It is precisely this case that is of interest in the problem of gyroscopic 
stabilization. In fact, suppose 
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Then, by condition (5.1), we have the inequality 

4(fX, X) + (rx, l-x) Z= y+, X) 

Consequently (using (2.2)), V(X) 2 0. We have obtained a contradiction. 
Since 

trQ( t) = tr(P - P/4) = const 

inequality (5.3) gives the following sufficient condition for gyroscopic stabilization 

trP+@<$+(n_q)o: 
2 rl 

(5.4) 

Here k = (r&)/2. Unfortunately, condition (5.4) gives a small stability zone. For example, it necessarily 
breaks down for large values of the parameter y, characterizing the intensity of the gyroscopic forces. 
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